16 research outputs found

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Risk Minimizing Evacuation Strategies under Uncertainty

    Get PDF
    This paper presents results on the simulation of the evacuation of the city of Padang with approximately 1,000,000 inhabitants. The model used is MATSim (www.matsim.org). Three different strategies were applied: shortest path solution, user optimum, system optimum, together with a constraint that moves should reduce risk whenever possible. The introduction of the risk minimization increases the overall required safe egress time (RSET). The differences between the RSET for the three risk minimizing strategies are small. Further quantities used for the assessment of the evacuation are the formation of congestion and the individual RSETs (in comparison with the available SET).BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Hamburg Wilhelmsburg

    Get PDF

    Simulating mustering and evacuation processes onboard passenger vessels: Model and applications

    No full text
    The analysis of evacuation processes onboard passenger ships has attracted increasing interest over the last years. Especially the introduction of so called performance based requirements as stated in SOLAS II-2/28-1.3 leads towards a more comprehensive assessment. However, for a thorough investigation of the evacuation performance it is not sufficient to look only at the geometry, like hydraulic or flow models do. Behavioural and procedural aspects have also to be taken into account, although one will never be able to predict exactly what will happen. Since knowledge of the initial conditions, influencing factors, and laws of human behaviour is limited, it does not make sense to include factors that cannot be quantified. Therefore, a compromise has to be found: to get as close to reality as necessary and to provide a method as flexible, straightforward, and comprehensible as possible. This, of course, is a crucial question in evacuation assessment and modelling of real world processes in general. We present a microscopic simulation model that is capable of representing every individual person and his/her characteristic abilities as well as all necessary details of the floor plan and a
    corecore